A model for fluvial bedrock incision by impacting suspended and bed load sediment
نویسندگان
چکیده
[1] A mechanistic model is derived for the rate of fluvial erosion into bedrock by abrasion from uniform size particles that impact the bed during transport in both bed and suspended load. The erosion rate is equated to the product of the impact rate, the mass loss per particle impact, and a bed coverage term. Unlike previous models that consider only bed load, the impact rate is not assumed to tend to zero as the shear velocity approaches the threshold for suspension. Instead, a given sediment supply is distributed between the bed and suspended load by using formulas for the bed load layer height, bed load velocity, logarithmic fluid velocity profile, and Rouse sediment concentration profile. It is proposed that the impact rate scales linearly with the product of the near-bed sediment concentration and the impact velocity and that particles impact the bed because of gravitational settling and advection by turbulent eddies. Results suggest, unlike models that consider only bed load, that the erosion rate increases with increasing transport stage (for a given relative sediment supply), even for transport stages that exceed the onset of suspension. In addition, erosion can occur if the supply of sediment exceeds the bed load transport capacity because a portion of the sediment load is transported in suspension. These results have implications for predicting erosion rates and channel morphology, especially in rivers with fine sediment, steep channel-bed slopes, and large flood events.
منابع مشابه
A mechanistic model for river incision into bedrock by saltating bed load
[1] Abrasion by bed load is a ubiquitous and sometimes dominant erosional mechanism for fluvial incision into bedrock. Here we develop a model for bedrock abrasion by saltating bed load wherein the wear rate depends linearly on the flux of impact kinetic energy normal to the bed and on the fraction of the bed that is not armored by transient deposits of alluvium. We assume that the extent of al...
متن کاملRelative rates of fluvial bedrock incision on Titan and Earth
[1] Observations of likely fluvial channels on the surface of Titan, along with Titan’s geologically youthful surface, motivate this study of comparative fluvial erosion rates on Titan and the Earth. The roles of bedload abrasion, suspended load abrasion, plucking, and cavitation are considered. Despite orders of magnitude differences in some of the physical parameters that control fluvial inci...
متن کاملPredictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models
[1] Recent experimental and theoretical studies support the notion that bed load in mountain rivers can both enhance incision rates through wear and inhibit incision rates by covering the bed. These effects may play an important role in landscape evolution and, in particular, the response of river channels to tectonic or climatic perturbation. We use the channel-hillslope integrated landscape d...
متن کاملTransport slopes, sediment cover, and bedrock channel incision in the Henry Mountains, Utah
[1] Field data from channels in the Henry Mountains of Utah demonstrate that abundant coarse sediment can inhibit fluvial incision into bedrock by armoring channel beds (the cover effect). We compare several small channels that share tributary junctions and have incised into the same sedimentary bedrock unit (Navajo Sandstone) but contain differing amounts of coarse diorite clasts owing to the ...
متن کاملCoarse sediment transport in a bedrock channel with complex bed topography
[1] Independent lithologic and structural controls in fluvial bedrock systems interact with coarse sediment transport processes to play a key role in bedrock incision processes such as abrasion. During a 3 year study on the Ocoee River in the Blue Ridge Province of the southern Appalachians, USA, we used painted tracer clasts to measure coarse sediment transport dynamics and address whether dif...
متن کامل